Technique Visualizes Brain Tumors During Surgery

Recognizing the difference between tumors and normal brain tissue during surgery is a major challenge. Removing healthy tissue can cause neurologic problems, but leaving tumor tissue behind can allow the cancer to spread again. This is a particular problem with glioblastoma multiforme, the most common form of malignant brain cancer in adults. Glioblastoma tumors grow quickly and are difficult to treat. The tumors infiltrate normal brain tissue and can’t be easily singled out.

Experimental methods to tell the difference between tumors and normal tissue during surgery have had limited success. Over the past 15 years, a team led by Dr. Sunney Xie at Harvard University has been developing a technique called stimulated Raman scattering (SRS) microscopy. The method takes advantage of the fact that chemical bonds in molecules have their own sets of vibration frequencies, and produce unique patterns of scattered light called Raman spectra. These spectra can be used as fingerprints to identify and differentiate different molecules in a complex environment. SRS microscopy involves shining noninvasive lasers to excite particular Raman frequencies in tissues. The weak light signals emitted by the tissues vary depending on the tissues’ molecular composition, such as lipids, proteins, and DNA.

In collaboration with Dr. Daniel Orringer and colleagues at the University of Michigan Medical School, Xie’s team applied SRS microscopy to the problem of distinguishing protein-rich glioblastomas from more lipid-rich surrounding tissue. Their work was funded by an NIH Director’s Transformative Research Award and by NIH’s National Cancer Institute (NCI). The results appeared on September 4, 2013, in Science Translational Medicine.

By combining SRS images made from light at 2 different frequencies, the scientists were able to construct images that identified tissues with different lipid and protein content. To test the approach on tumors, they implanted human glioblastoma cells into mice and allowed them to grow into tumors. They then placed samples on slides and used SRS microscopy to make 2-color images of the samples. For comparison, they froze the samples and stained them with hematoxylin and eosin (H&E), the current approach used to diagnose brain tumors.

The scientists found that SRS microscopy worked as well as H&E in distinguishing tumor-infiltrated brain tissue from surrounding healthy tissue. They then adapted the technique for use in live mice. Craniectomies exposed the tumor and adjacent brain tissue for SRS imaging. While standard microscopy found no obvious evidence of the tumor, SRS microscopy identified regions with extensive tumor infiltration.


 Get The Latest By Email

Weekly Magazine Daily Inspiration

“For more than 100 years, hematoxylin and eosin stain has been the gold standard for this type of imaging,” Xie says. “But with this [SRS] technology, we don't need to freeze the tissue, we don't need to stain tissue, and we don't need to biopsy—this acts like an optical biopsy and allows us to identify the tumor margins at a cellular level.”

Several challenges remain before SRS microscopy could be used in the clinic. These include the engineering challenge of making a handheld surgical device with motion correction to acquire images from within a surgical cavity.

Article Source: NIH Research Matters

AVAILABLE LANGUAGES

English Afrikaans Arabic Chinese (Simplified) Chinese (Traditional) Danish Dutch Filipino Finnish French German Greek Hebrew Hindi Hungarian Indonesian Italian Japanese Korean Malay Norwegian Persian Polish Portuguese Romanian Russian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese

Wednesday, 05 May 2021 08:15

While our immune system and antibiotics both do a great job of helping us fight life-threatening infections, the emergence of antibiotic resistance is quickly making it more difficult to cure...

Thursday, 27 July 2023 20:13

How to train your body for hot weather if you are active or work outdoors Heat exposure is inevitable for those who work or are active outdoors. (Shutterstock) Global warming is making outdoor...

Wednesday, 26 July 2023 17:18

Do you know why junk food is so addictive? Are you craving sweets yet? If you've ever wondered why junk food can be so addictive, you're not alone.

Monday, 24 July 2023 19:42

Today, mountains of calorie-rich (and often nutritionally poor) food and lakes of sugary beverages are readily available in much of the world. It’s no longer necessary to leave home — or even stand...

Thursday, 27 May 2021 05:24

Life, by its very nature is … alive! Because it is alive, it is not just responding in a set, mechanical way, but rather it is responsive to what is needed and helpful and useful. Cells might...

Thursday, 01 April 2021 16:24

  Flamenco dancing is a delight to watch. A good flamenco dancer exudes an exuberant self-confidence that we, the audience, absorb. The whole dance has a quality of proud self-assurance and...

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.