How Self-Disinfecting Surfaces Could Protect Us From Disease

How Self-Disinfecting Surfaces Could Protect Us From Disease
Sheets of self-disinfecting material could be applied to all sorts of frequently touched surfaces.

Cleaning and disinfecting frequently touched surfaces and objects (such as door handles) can help prevent the spread of infectious diseases. This is more relevant now than ever.

One way that COVID-19 can spread is when people who have the virus leave infected droplets on surfaces after sneezing or coughing. Studies have found SARS-CoV-2 (the virus that causes COVID-19) can survive on some surfaces for days – particularly those made of plastic or metal.

If another person touches an infected surface, and then touches their eyes, nose or mouth before having washed or sanitised their hands, it’s possible they could become infected. This is why hand washing has become such a focus during the pandemic.

But at Queen’s University Belfast, we’re developing another protective solution: self-disinfecting surfaces. Our team has created materials that can kill infection-causing microbes upon contact, helping to prevent the transmission of contagious diseases.

The materials contain substances called photosensitisers. All that they need to work is light and oxygen. When exposed to these, photosensitisers produce molecules called reactive oxygen species – highly reactive forms of oxygen that can cause fatal damage to microbes that have landed on the material. The source of light could be something as simple as sunlight – an abundant, freely available resource – though artificial lighting or light from a specialised source (such as a fibre optics and LEDs) can also be used.

Our research group has been developing photosensitiser-containing materials over many years and has already shown their effectiveness against a wide range of bacteria. In light of the pandemic, we’re now carrying out new research to test the materials’ antiviral activity, to see if they could play a role in controlling the transmission of SARS-CoV-2.

We’re pretty hopeful. It’s already been shown that this technique kills other types of virus, and several groups of researchers have suggested that medical treatments using the same technology could be effective against COVID-19. We should have a good sense of whether our materials will kill the virus within the next few months.

How to roll out these materials

Our team has used these materials to produce light-activated, self-disinfecting polymer sheets and films. These could very easily be used as surface overlays and coatings for items such as door handles, handrails, worktops and touch screens. Manufactured with an adhesive backing, they would not require any specialist installation. It would be as simple as applying sticky-back plastic or replacing a screen protector on a smartphone.

The raw materials used are relatively inexpensive, so our approach is likely to be more cost-effective than some antimicrobial materials currently on the market. Many of these use silver as the active ingredient, which can be quite expensive.

And the materials we’ve developed would not only be useful in controlling transmission of viral diseases. With antibiotic resistant bacteria an ever-increasing threat to global health, they could also help control the spread of so-called superbugs in hospitals. While the world is focused on COVID-19, drug-resistant infections haven’t gone away. A growing list of diseases (such as tuberculosis and blood poisoning) are becoming harder – sometimes impossible – to treat.

Our goal is to see our research move from the lab to real-life settings, such as hospitals, public transport and schools. For this to become a reality, industry partners are needed for manufacture and large-scale production. Any materials created will also need to meet regulations for disinfectants.

So, there’s still work to do before there are light-activated self-disinfecting grab handles on the number 10 bus to protect you during your commute. But by shining the spotlight on this technology, hopefully we can get there sooner.The Conversation

About the Authors

Louise Carson, Lecturer in Pharmaceutical Science, Queen's University Belfast; Colin McCoy, Professor of Biomaterials Chemistry, Queen's University Belfast, and Jessica Moore, Postdoctoral Research Fellow, School of Pharmacy, Queen's University Belfast

This article is republished from The Conversation under a Creative Commons license. Read the original article.



English Afrikaans Arabic Chinese (Simplified) Chinese (Traditional) Danish Dutch Filipino Finnish French German Greek Hebrew Hindi Hungarian Indonesian Italian Japanese Korean Malay Norwegian Persian Polish Portuguese Romanian Russian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese

Friday, 21 May 2021 10:09

The humble potato has been given a bad rap. What was once a cheap staple of many countries’ diets has instead been branded in recent years an “unhealthy” food best avoided.

Thursday, 27 July 2023 20:13

How to train your body for hot weather if you are active or work outdoors Heat exposure is inevitable for those who work or are active outdoors. (Shutterstock) Global warming is making outdoor...

Saturday, 01 May 2021 08:12

High-intensity interval training (HIIT) workouts have become popular in recent years for a number of reasons. They don’t require as much time as a regular workout (some can take as little as 10...

Tuesday, 25 July 2023 17:28

Certain foods or dietary patterns are linked with better control of your asthma. Others may make it worse. Depending on what you’ve eaten, you can see the effects in hours.

Thursday, 01 April 2021 16:24

  Flamenco dancing is a delight to watch. A good flamenco dancer exudes an exuberant self-confidence that we, the audience, absorb. The whole dance has a quality of proud self-assurance and...

Saturday, 15 May 2021 16:24

There exist several approaches to obtaining optimal health, all of them important, each of them acting in some way on all the aspects of our beings. I know that if a technique were valid for...

New Attitudes - New Possibilities | | | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.