How Animal Parasites Find A Home In Humans

dgyhjkljhiout

There has been a lot of buzz recently about a video shared by Oregon woman Abby Beckley, who describes removing worms from her eye. Researchers at the Centers for Disease Control and Prevention released a case report documenting Beckley’s infection as the first human case of the cattle eyeworm Thelazia gulosa.

We certainly feel for Beckley having to go through this ordeal, and without a doubt, felt our skin crawl just thinking about it. But aside from the “creep” factor of this case, it does makes us wonder how a cow parasite ever ended up in a human eye. And it begs the more fundamental question: How are animal parasites able to infect humans?

To answer this question, we need to understand more about parasites and their ecology. As a veterinarian and disease ecologist, my research examines what ecological factors influence the emergence of zoonoses — diseases that spread from animals to humans. The case of the cattle eyeworms is certainly intriguing.

Parasitism – the basics

In the most basic sense, a parasite is an organism that lives on (“ectoparasite” – ticks, fleas, mosquitoes) or in (“endoparasite” – eye worms, intestinal worms, blood parasites) another organism and uses that organism (“host”) for sustenance.


 Get The Latest By Email

Weekly Magazine Daily Inspiration

Let’s focus on endoparasites.

The life cycle of an endoparasite can be highly complex and may involve multiple hosts. The definitive host is where the parasite reproduces, while the intermediate host — or hosts — houses the immature, non-reproductive life stages.

Another kind of host exists, called an accidental host, that the parasite is able to infect but is not part of its regular life cycle. Humans are accidental hosts for cattle eyeworms.

Parasitic species range in their host specificity — the hosts that they can infect during a specific life stage — from highly specific (one host) to very loose (many species).

Moving from an animal host to humans

Transmission of parasites from one host to another can occur through several routes, depending on where the parasite resides in the host and how it is shed, for example through feces, blood or other bodily secretions. Direct contact, consumption of contaminated water or food (Cryptosporidium, Giardia), or via a vector like a tick or mosquito are all possible.

Parasitic infections transmitted from animals to humans have occurred naturally throughout history.

Previously, it was thought that evolutionary changes were required in order for a parasite to switch hosts. Although this is certainly one process for host-switching, research has shown that the mechanisms parasites use to successfully invade, survive and reproduce within one host may be applicable across a range of hosts.

This process, called ecological fitting, means that host-switching can occur more rapidly without the need to develop new mechanisms.

Humans have accelerated both of these processes by contributing to major ecological changes, and as a result, over the last century, we have seen the rapid emergence of zoonotic diseases. And not just from parasites, but bacteria and viruses as well.

Ecological change occurring at alarming rate

In disease ecology, we think holistically about a disease, examining the intersection of the pathogen —in this case a parasite —its hosts and the environmental conditions in which the disease occurs.

Human-induced global ecological changes have shifted the balance of many disease systems — resulting in new diseases or old diseases moving into new areas or new hosts.

Climate change is making some areas more suitable for certain species, particularly in temperate areas and at higher altitudes. As a species’ range expands, the range of its parasites may also expand, providing new potential for transmission to native species within the area.

Globalization and increased international travel and trade facilitates rapid movement of humans and animals around the globe. New species may establish in an area and contribute to pathogen transmission, and native species in those areas have no previous immunity.

Consider the example of human angiostrongyliasis. Caused by the rat lungworm, Angliostrongylus cantonensis, several countries previously free of this disease have experienced outbreaks due to the introduction of the intermediate host, the giant African snail, in shipping containers.

Urbanization and human encroachment into wildlife habitat have contributed to increased contact between humans and animals, providing more opportunities for transmission of infectious agents, like parasites.

Peninsular Malaysia has experienced a significant increase in human malaria cases. Investigations identified the pathogen as Plasmodium knowlesi, which is naturally found in long-tailed and pig-tailed macaques and can be transmitted to humans by mosquitoes. Deforestation and rapid economic development in this area has brought humans into closer contact with these primates.

Other landscape changes can also dramatically alter the community of species within an ecosystem. Overgrazing and degradation of pastures in Tibet coincided with a dramatic increase in cases of alveolar echinococcocus. Small mammals that act as the intermediate host for the causative parasite Echinococcus multilocularis flourished in this environment, facilitating the cycle of transmission.

One important thing to note is that these processes do not just accelerate transmission from animals to humans. Evidence exists of the introduction of parasites into wildlife populations due to human activity as well.

This can be particularly detrimental for vulnerable species, which may already be threatened due to ongoing ecological changes. Outbreaks of toxoplasmosis in sea otters in California and marsupials in Australia are thought to be due to human-induced water contamination with domestic cat feces.

Collaborative approaches are needed

We know that the emergence of zoonotic parasite infections is a complex issue. Not only does it involve human health, but animal health and environmental health too. That means collaborative efforts across disciplines are needed to understand, control and prevent these diseases, and we must join together to address the ecological changes that may have significant human and animal health implications in the future.

At this time, it’s difficult to know if the cattle eyeworm Thelazia gulosa will become an issue for humans. History is full of examples of strange transmissions of pathogens that are not seen again or rarely reappear.

The ConversationBut it’s important that Abby Beckley told her story, as we have a heightened awareness and can remain vigilant of potential risks.

About The Author

Katie M. Clow, Postdoctoral Fellow, University of Guelph

books_health

This article was originally published on The Conversation. Read the original article.

You May Also Like

AVAILABLE LANGUAGES

English Afrikaans Arabic Bengali Chinese (Simplified) Chinese (Traditional) Dutch Filipino French German Hindi Indonesian Italian Japanese Javanese Korean Malay Marathi Persian Portuguese Russian Spanish Swahili Swedish Tamil Thai Turkish Ukrainian Urdu Vietnamese

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

MOST READ

Workplaces must recognize its physical and emotional toll
Workplaces must recognize its physical and emotional toll
by Stephanie Gilbert, Assistant Professor of Organizational Management, Cape Breton University
Study shows AI-generated fake reports fool experts
Study shows AI-generated fake reports fool experts
by Priyanka Ranade, PhD Student in Computer Science and Electrical Engineering, University of Maryland, Baltimore County
What is endometriosis? Patients turn to social media for information and support
What is endometriosis? Patients turn to social media for information and support
by Eileen Mary Holowka, PhD Candidate, Communication Studies, Concordia University
Macular degeneration is a leading cause of blindness. Here's how to prevent it
Macular degeneration is a leading cause of blindness. Here's how to prevent it
by Langis Michaud, Professeur Titulaire. École d'optométrie. Expertise en santé oculaire et usage des lentilles cornéennes spécialisées, Université de Montréal
Can I get AstraZeneca now and Pfizer later? Why mixing and matching COVID vaccines could help solve many rollout problems
Can I get AstraZeneca now and Pfizer later? Why mixing and matching COVID vaccines could help solve many rollout problems
by Fiona Russell, Senior Principal Research Fellow; paediatrician; infectious diseases epidemiologist, The University of Melbourne
10 steps to get ready for wildfire smoke
10 steps to get ready for wildfire smoke
by Sarah Henderson, Associate Professor (Partner), School of Population and Public Health, University of British Columbia
Close-up of a man's neck with a band holding a small microphone to his throat
Simple, fast, wide-awake diagnosis of sleep apnea could enable better surgical care and improve sleep
by Zahra Moussavi, Professor of Biomedical Engineering, University of Manitoba
The eruption of Mount Nyiragongo: its health effects will be felt for a long time
The eruption of Mount Nyiragongo: its health effects will be felt for a long time
by Patrick de Marie C. Katoto, Lecturer, Université catholique de Bukavu
A health-care worker performs a COVID swab test on a patient.
Why are some COVID test results false positives, and how common are they?
by Adrian Esterman, Professor of Biostatistics and Epidemiology, University of South Australia
The next pandemic is already happening – targeted disease surveillance can help prevent it
The next pandemic is already happening – targeted disease surveillance can help prevent it
by Maureen Miller, Adjunct Associate Professor of Epidemiology, Columbia University
I’m fully vaccinated but feel sick – should I get tested for COVID-19?
I’m fully vaccinated but feel sick – should I get tested for COVID-19?
by Arif R. Sarwari, Physician, Associate Professor of Infectious Diseases, Chair of Department of Medicine, West Virginia University

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.